
812 Chapter 9 Virtual Memory

Figure 9.32
Visual interpretation of
mmap arguments.

length (bytes)

length (bytes)

offset
(bytes)

Disk file specified by
file descriptor fd

Process
virtual memory

start
(or address

chosen by the
kernel)

0 0

The flags argument consists of bits that describe the type of the mapped
object. If the MAP_ANON flag bit is set, then the backing store is an anonymous
object and the corresponding virtual pages are demand-zero. MAP_PRIVATE
indicates a private copy-on-write object, and MAP_SHARED indicates a shared
object. For example,

bufp = Mmap(-1, size, PROT_READ, MAP_PRIVATE|MAP_ANON, 0, 0);

asks the kernel to create a new read-only, private, demand-zero area of virtual
memory containing size bytes. If the call is successful, then bufp contains the
address of the new area.

The munmap function deletes regions of virtual memory:

#include <unistd.h>

#include <sys/mman.h>

int munmap(void *start, size_t length);

Returns: 0 if OK, −1 on error

The munmap function deletes the area starting at virtual address start and consist-
ing of the next length bytes. Subsequent references to the deleted region result
in segmentation faults.

Practice Problem 9.5
Write a C programmmapcopy.c that usesmmap to copy an arbitrary-sized disk file to
stdout. The name of the input file should be passed as a command line argument.

9.9 Dynamic Memory Allocation

While it is certainly possible to use the low-level mmap and munmap functions to
create and delete areas of virtual memory, C programmers typically find it more

Section 9.9 Dynamic Memory Allocation 813

Figure 9.33
The heap.

Memory mapped region
for shared libraries

User stack

0

Heap

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)

Top of the heap
(brk ptr)

convenient and more portable to use a dynamic memory allocator when they need
to acquire additional virtual memory at run time.

A dynamic memory allocator maintains an area of a process’s virtual memory
known as the heap (Figure 9.33). Details vary from system to system, but without
loss of generality, we will assume that the heap is an area of demand-zero mem-
ory that begins immediately after the uninitialized bss area and grows upward
(toward higher addresses). For each process, the kernel maintains a variable brk
(pronounced “break”) that points to the top of the heap.

An allocator maintains the heap as a collection of various-sized blocks. Each
block is a contiguous chunk of virtual memory that is either allocated or free. An
allocated block has been explicitly reserved for use by the application. A free block
is available to be allocated. A free block remains free until it is explicitly allocated
by the application. An allocated block remains allocated until it is freed, either
explicitly by the application, or implicitly by the memory allocator itself.

Allocators come in two basic styles. Both styles require the application to
explicitly allocate blocks. They differ about which entity is responsible for freeing
allocated blocks.

. Explicit allocators require the application to explicitly free any allocated
blocks. For example, the C standard library provides an explicit allocator
called the malloc package. C programs allocate a block by calling the malloc
function, and free a block by calling the free function. The new and delete
calls in C++ are comparable.

. Implicit allocators, on the other hand, require the allocator to detect when
an allocated block is no longer being used by the program and then free
the block. Implicit allocators are also known as garbage collectors, and the

814 Chapter 9 Virtual Memory

process of automatically freeing unused allocated blocks is known as garbage
collection. For example, higher-level languages such as Lisp, ML, and Java rely
on garbage collection to free allocated blocks.

The remainder of this section discusses the design and implementation of
explicit allocators. We will discuss implicit allocators in Section 9.10. For concrete-
ness, our discussion focuses on allocators that manage heap memory. However,
you should be aware that memory allocation is a general idea that arises in a vari-
ety of contexts. For example, applications that do intensive manipulation of graphs
will often use the standard allocator to acquire a large block of virtual memory,
and then use an application-specific allocator to manage the memory within that
block as the nodes of the graph are created and destroyed.

9.9.1 The malloc and free Functions

The C standard library provides an explicit allocator known as themallocpackage.
Programs allocate blocks from the heap by calling the malloc function.

#include <stdlib.h>

void *malloc(size_t size);

Returns: ptr to allocated block if OK, NULL on error

The malloc function returns a pointer to a block of memory of at least size bytes
that is suitably aligned for any kind of data object that might be contained in the
block. On the Unix systems that we are familiar with, malloc returns a block that
is aligned to an 8-byte (double word) boundary.

Aside How big is a word?

Recall from our discussion of machine code in Chapter 3 that Intel refers to 4-byte objects as double
words. However, throughout this section, we will assume that words are 4-byte objects and that double
words are 8-byte objects, which is consistent with conventional terminology.

If malloc encounters a problem (e.g., the program requests a block of memory
that is larger than the available virtual memory), then it returns NULL and sets
errno. Malloc does not initialize the memory it returns. Applications that want
initialized dynamic memory can use calloc, a thin wrapper around the malloc
function that initializes the allocated memory to zero. Applications that want to
change the size of a previously allocated block can use the realloc function.

Dynamic memory allocators such as malloc can allocate or deallocate heap
memory explicitly by using the mmap and munmap functions, or they can use the
sbrk function:

Section 9.9 Dynamic Memory Allocation 815

#include <unistd.h>

void *sbrk(intptr_t incr);

Returns: old brk pointer on success, −1 on error

The sbrk function grows or shrinks the heap by adding incr to the kernel’s brk
pointer. If successful, it returns the old value of brk, otherwise it returns −1 and
sets errno to ENOMEM. If incr is zero, then sbrk returns the current value of
brk. Calling sbrk with a negative incr is legal but tricky because the return value
(the old value of brk) points to abs(incr) bytes past the new top of the heap.

Programs free allocated heap blocks by calling the free function.

#include <stdlib.h>

void free(void *ptr);

Returns: nothing

The ptr argument must point to the beginning of an allocated block that was
obtained from malloc, calloc, or realloc. If not, then the behavior of free
is undefined. Even worse, since it returns nothing, free gives no indication to
the application that something is wrong. As we shall see in Section 9.11, this can
produce some baffling run-time errors.

Figure 9.34 shows how an implementation of malloc and freemight manage
a (very) small heap of 16 words for a C program. Each box represents a 4-byte
word. The heavy-lined rectangles correspond to allocated blocks (shaded) and
free blocks (unshaded). Initially, the heap consists of a single 16-word double-
word aligned free block.

. Figure 9.34(a): The program asks for a four-word block. Malloc responds by
carving out a four-word block from the front of the free block and returning
a pointer to the first word of the block.

. Figure 9.34(b): The program requests a five-word block. Malloc responds by
allocating a six-word block from the front of the free block. In this example,
malloc pads the block with an extra word in order to keep the free block
aligned on a double-word boundary.

. Figure 9.34(c): The program requests a six-word block and malloc responds
by carving out a six-word block from the free block.

. Figure 9.34(d): The program frees the six-word block that was allocated in
Figure 9.34(b). Notice that after the call to free returns, the pointer p2 still
points to the freed block. It is the responsibility of the application not to use
p2 again until it is reinitialized by a new call to malloc.

816 Chapter 9 Virtual Memory

p1

(a) p1 = malloc(4*sizeof(int))

p1 p2

(b) p2 = malloc(5*sizeof(int))

p1 p2 p3

(c) p3 = malloc(6*sizeof(int))

p1 p2 p3

(d) free(p2)

p1 p2 p4 p3

(e) p4 = malloc(2*sizeof(int))

Figure 9.34 Allocating and freeing blocks with malloc and free. Each square
corresponds to a word. Each heavy rectangle corresponds to a block. Allocated blocks
are shaded. Padded regions of allocated blocks are shaded with stripes. Free blocks are
unshaded. Heap addresses increase from left to right.

. Figure 9.34(e): The program requests a two-word block. In this case, malloc
allocates a portion of the block that was freed in the previous step and returns
a pointer to this new block.

9.9.2 Why Dynamic Memory Allocation?

The most important reason that programs use dynamic memory allocation is that
often they do not know the sizes of certain data structures until the program
actually runs. For example, suppose we are asked to write a C program that reads
a list of n ASCII integers, one integer per line, from stdin into a C array. The
input consists of the integer n, followed by the n integers to be read and stored
into the array. The simplest approach is to define the array statically with some
hard-coded maximum array size:

1 #include "csapp.h"

2 #define MAXN 15213

3

4 int array[MAXN];

Section 9.9 Dynamic Memory Allocation 817

5

6 int main()

7 {

8 int i, n;

9

10 scanf("%d", &n);

11 if (n > MAXN)

12 app_error("Input file too big");

13 for (i = 0; i < n; i++)

14 scanf("%d", &array[i]);

15 exit(0);

16 }

Allocating arrays with hard-coded sizes like this is often a bad idea. The value
of MAXN is arbitrary and has no relation to the actual amount of available virtual
memory on the machine. Further, if the user of this program wanted to read a file
that was larger than MAXN, the only recourse would be to recompile the program
with a larger value of MAXN. While not a problem for this simple example, the
presence of hard-coded array bounds can become a maintenance nightmare for
large software products with millions of lines of code and numerous users.

A better approach is to allocate the array dynamically, at run time, after the
value of n becomes known. With this approach, the maximum size of the array is
limited only by the amount of available virtual memory.

1 #include "csapp.h"

2

3 int main()

4 {

5 int *array, i, n;

6

7 scanf("%d", &n);

8 array = (int *)Malloc(n * sizeof(int));

9 for (i = 0; i < n; i++)

10 scanf("%d", &array[i]);

11 exit(0);

12 }

Dynamic memory allocation is a useful and important programming tech-
nique. However, in order to use allocators correctly and efficiently, programmers
need to have an understanding of how they work. We will discuss some of the grue-
some errors that can result from the improper use of allocators in Section 9.11.

9.9.3 Allocator Requirements and Goals

Explicit allocators must operate within some rather stringent constraints.

. Handling arbitrary request sequences. An application can make an arbitrary
sequence of allocate and free requests, subject to the constraint that each

818 Chapter 9 Virtual Memory

free request must correspond to a currently allocated block obtained from
a previous allocate request. Thus, the allocator cannot make any assumptions
about the ordering of allocate and free requests. For example, the allocator
cannot assume that all allocate requests are accompanied by a matching free
request, or that matching allocate and free requests are nested.

. Making immediate responses to requests. The allocator must respond imme-
diately to allocate requests. Thus, the allocator is not allowed to reorder or
buffer requests in order to improve performance.

. Using only the heap. In order for the allocator to be scalable, any non-scalar
data structures used by the allocator must be stored in the heap itself.

. Aligning blocks (alignment requirement). The allocator must align blocks in
such a way that they can hold any type of data object. On most systems, this
means that the block returned by the allocator is aligned on an 8-byte (double-
word) boundary.

. Not modifying allocated blocks.Allocators can only manipulate or change free
blocks. In particular, they are not allowed to modify or move blocks once they
are allocated. Thus, techniques such as compaction of allocated blocks are not
permitted.

Working within these constraints, the author of an allocator attempts to meet
the often conflicting performance goals of maximizing throughput and memory
utilization.

. Goal 1: Maximizing throughput. Given some sequence of n allocate and free
requests

R0, R1, . . . , Rk, . . . , Rn−1

we would like to maximize an allocator’s throughput, which is defined as the
number of requests that it completes per unit time. For example, if an allo-
cator completes 500 allocate requests and 500 free requests in 1 second, then
its throughput is 1,000 operations per second. In general, we can maximize
throughput by minimizing the average time to satisfy allocate and free re-
quests. As we’ll see, it is not too difficult to develop allocators with reasonably
good performance where the worst-case running time of an allocate request
is linear in the number of free blocks and the running time of a free request
is constant.

. Goal 2: Maximizing memory utilization.Naive programmers often incorrectly
assume that virtual memory is an unlimited resource. In fact, the total amount
of virtual memory allocated by all of the processes in a system is limited by the
amount of swap space on disk. Good programmers know that virtual memory
is a finite resource that must be used efficiently. This is especially true for
a dynamic memory allocator that might be asked to allocate and free large
blocks of memory.

There are a number of ways to characterize how efficiently an allocator
uses the heap. In our experience, the most useful metric is peak utilization. As

Section 9.9 Dynamic Memory Allocation 819

before, we are given some sequence of n allocate and free requests

R0, R1, . . . , Rk, . . . , Rn−1

If an application requests a block of p bytes, then the resulting allocated block
has a payload of p bytes. After request Rk has completed, let the aggregate
payload, denoted Pk, be the sum of the payloads of the currently allocated
blocks, and let Hk denote the current (monotonically nondecreasing) size of
the heap.

Then the peak utilization over the first k requests, denoted by Uk, is
given by

Uk = maxi≤k Pi

Hk

The objective of the allocator then is to maximize the peak utilization Un−1
over the entire sequence. As we will see, there is a tension between maximiz-
ing throughput and utilization. In particular, it is easy to write an allocator
that maximizes throughput at the expense of heap utilization. One of the in-
teresting challenges in any allocator design is finding an appropriate balance
between the two goals.

Aside Relaxing the monotonicity assumption

We could relax the monotonically nondecreasing assumption in our definition of Uk and allow the heap
to grow up and down by letting Hk be the highwater mark over the first k requests.

9.9.4 Fragmentation

The primary cause of poor heap utilization is a phenomenon known as fragmen-
tation, which occurs when otherwise unused memory is not available to satisfy
allocate requests. There are two forms of fragmentation: internal fragmentation
and external fragmentation.

Internal fragmentation occurs when an allocated block is larger than the pay-
load. This might happen for a number of reasons. For example, the implementation
of an allocator might impose a minimum size on allocated blocks that is greater
than some requested payload. Or, as we saw in Figure 9.34(b), the allocator might
increase the block size in order to satisfy alignment constraints.

Internal fragmentation is straightforward to quantify. It is simply the sum of
the differences between the sizes of the allocated blocks and their payloads. Thus,
at any point in time, the amount of internal fragmentation depends only on the
pattern of previous requests and the allocator implementation.

External fragmentation occurs when there is enough aggregate free memory
to satisfy an allocate request, but no single free block is large enough to handle the
request. For example, if the request in Figure 9.34(e) were for six words rather than
two words, then the request could not be satisfied without requesting additional
virtual memory from the kernel, even though there are six free words remaining

820 Chapter 9 Virtual Memory

in the heap. The problem arises because these six words are spread over two free
blocks.

External fragmentation is much more difficult to quantify than internal frag-
mentation because it depends not only on the pattern of previous requests and the
allocator implementation, but also on the pattern of future requests. For example,
suppose that after k requests all of the free blocks are exactly four words in size.
Does this heap suffer from external fragmentation? The answer depends on the
pattern of future requests. If all of the future allocate requests are for blocks that
are smaller than or equal to four words, then there is no external fragmentation.
On the other hand, if one or more requests ask for blocks larger than four words,
then the heap does suffer from external fragmentation.

Since external fragmentation is difficult to quantify and impossible to predict,
allocators typically employ heuristics that attempt to maintain small numbers of
larger free blocks rather than large numbers of smaller free blocks.

9.9.5 Implementation Issues

The simplest imaginable allocator would organize the heap as a large array of
bytes and a pointer p that initially points to the first byte of the array. To allocate
size bytes, malloc would save the current value of p on the stack, increment p by
size, and return the old value of p to the caller. Free would simply return to the
caller without doing anything.

This naive allocator is an extreme point in the design space. Since each malloc
and free execute only a handful of instructions, throughput would be extremely
good. However, since the allocator never reuses any blocks, memory utilization
would be extremely bad. A practical allocator that strikes a better balance between
throughput and utilization must consider the following issues:

. Free block organization: How do we keep track of free blocks?

. Placement: How do we choose an appropriate free block in which to place a
newly allocated block?

. Splitting: After we place a newly allocated block in some free block, what do
we do with the remainder of the free block?

. Coalescing: What do we do with a block that has just been freed?

The rest of this section looks at these issues in more detail. Since the basic
techniques of placement, splitting, and coalescing cut across many different free
block organizations, we will introduce them in the context of a simple free block
organization known as an implicit free list.

9.9.6 Implicit Free Lists

Any practical allocator needs some data structure that allows it to distinguish
block boundaries and to distinguish between allocated and free blocks. Most
allocators embed this information in the blocks themselves. One simple approach
is shown in Figure 9.35.

Section 9.9 Dynamic Memory Allocation 821

Header

Block size

Payload
(allocated block only)

Padding (optional)

0 0 a

The block size includes
the header, payload, and
any padding

a = 1: Allocated
a = 0: Free

malloc returns a
pointer to the beginning
of the payload

31 3 2 1 0

Figure 9.35 Format of a simple heap block.

In this case, a block consists of a one-word header, the payload, and possibly
some additional padding. The header encodes the block size (including the header
and any padding) as well as whether the block is allocated or free. If we impose
a double-word alignment constraint, then the block size is always a multiple of
eight and the 3 low-order bits of the block size are always zero. Thus, we need to
store only the 29 high-order bits of the block size, freeing the remaining 3 bits
to encode other information. In this case, we are using the least significant of
these bits (the allocated bit) to indicate whether the block is allocated or free.
For example, suppose we have an allocated block with a block size of 24 (0x18)
bytes. Then its header would be

0x00000018 | 0x1 = 0x00000019

Similarly, a free block with a block size of 40 (0x28) bytes would have a header of

0x00000028 | 0x0 = 0x00000028

The header is followed by the payload that the application requested when it
called malloc. The payload is followed by a chunk of unused padding that can be
any size. There are a number of reasons for the padding. For example, the padding
might be part of an allocator’s strategy for combating external fragmentation. Or
it might be needed to satisfy the alignment requirement.

Given the block format in Figure 9.35, we can organize the heap as a sequence
of contiguous allocated and free blocks, as shown in Figure 9.36.

Unused
Start

of
heap

8/0 16/1 32/0 16/1 0/1
Double-

word
aligned

Figure 9.36 Organizing the heap with an implicit free list. Allocated blocks are shaded. Free blocks are
unshaded. Headers are labeled with (size (bytes)/allocated bit).

822 Chapter 9 Virtual Memory

We call this organization an implicit free list because the free blocks are linked
implicitly by the size fields in the headers. The allocator can indirectly traverse
the entire set of free blocks by traversing all of the blocks in the heap. Notice that
we need some kind of specially marked end block, in this example a terminating
header with the allocated bit set and a size of zero. (As we will see in Section 9.9.12,
setting the allocated bit simplifies the coalescing of free blocks.)

The advantage of an implicit free list is simplicity. A significant disadvantage
is that the cost of any operation, such as placing allocated blocks, that requires a
search of the free list will be linear in the total number of allocated and free blocks
in the heap.

It is important to realize that the system’s alignment requirement and the
allocator’s choice of block format impose a minimum block size on the allocator.
No allocated or free block may be smaller than this minimum. For example, if we
assume a double-word alignment requirement, then the size of each block must
be a multiple of two words (8 bytes). Thus, the block format in Figure 9.35 induces
a minimum block size of two words: one word for the header, and another to
maintain the alignment requirement. Even if the application were to request a
single byte, the allocator would still create a two-word block.

Practice Problem 9.6
Determine the block sizes and header values that would result from the following
sequence of malloc requests. Assumptions: (1) The allocator maintains double-
word alignment, and uses an implicit free list with the block format from Fig-
ure 9.35. (2) Block sizes are rounded up to the nearest multiple of 8 bytes.

Request Block size (decimal bytes) Block header (hex)

malloc(1)

malloc(5)

malloc(12)

malloc(13)

9.9.7 Placing Allocated Blocks

When an application requests a block of k bytes, the allocator searches the free
list for a free block that is large enough to hold the requested block. The manner
in which the allocator performs this search is determined by the placement policy.
Some common policies are first fit, next fit, and best fit.

First fit searches the free list from the beginning and chooses the first free
block that fits. Next fit is similar to first fit, but instead of starting each search at
the beginning of the list, it starts each search where the previous search left off.
Best fit examines every free block and chooses the free block with the smallest size
that fits.

An advantage of first fit is that it tends to retain large free blocks at the end
of the list. A disadvantage is that it tends to leave “splinters” of small free blocks

Section 9.9 Dynamic Memory Allocation 823

Unused
Start

of
heap

8/0 16/1 16/1 16/116/0 0/1
Double-

word
aligned

Figure 9.37 Splitting a free block to satisfy a three-word allocation request. Allocated blocks are shaded.
Free blocks are unshaded. Headers are labeled with (size (bytes)/allocated bit).

toward the beginning of the list, which will increase the search time for larger
blocks. Next fit was first proposed by Donald Knuth as an alternative to first fit,
motivated by the idea that if we found a fit in some free block the last time, there
is a good chance that we will find a fit the next time in the remainder of the block.
Next fit can run significantly faster than first fit, especially if the front of the list
becomes littered with many small splinters. However, some studies suggest that
next fit suffers from worse memory utilization than first fit. Studies have found
that best fit generally enjoys better memory utilization than either first fit or next
fit. However, the disadvantage of using best fit with simple free list organizations
such as the implicit free list, is that it requires an exhaustive search of the heap.
Later, we will look at more sophisticated segregated free list organizations that
approximate a best-fit policy without an exhaustive search of the heap.

9.9.8 Splitting Free Blocks

Once the allocator has located a free block that fits, it must make another policy
decision about how much of the free block to allocate. One option is to use
the entire free block. Although simple and fast, the main disadvantage is that it
introduces internal fragmentation. If the placement policy tends to produce good
fits, then some additional internal fragmentation might be acceptable.

However, if the fit is not good, then the allocator will usually opt to split
the free block into two parts. The first part becomes the allocated block, and the
remainder becomes a new free block. Figure 9.37 shows how the allocator might
split the eight-word free block in Figure 9.36 to satisfy an application’s request for
three words of heap memory.

9.9.9 Getting Additional Heap Memory

What happens if the allocator is unable to find a fit for the requested block? One
option is to try to create some larger free blocks by merging (coalescing) free
blocks that are physically adjacent in memory (next section). However, if this
does not yield a sufficiently large block, or if the free blocks are already maximally
coalesced, then the allocator asks the kernel for additional heap memory by calling
the sbrk function. The allocator transforms the additional memory into one large
free block, inserts the block into the free list, and then places the requested block
in this new free block.

824 Chapter 9 Virtual Memory

Unused
Start

of
heap

8/0 16/1 16/0 16/116/0 0/1
Double-

word
aligned

Figure 9.38 An example of false fragmentation. Allocated blocks are shaded. Free blocks are unshaded.
Headers are labeled with (size (bytes)/allocated bit).

9.9.10 Coalescing Free Blocks

When the allocator frees an allocated block, there might be other free blocks
that are adjacent to the newly freed block. Such adjacent free blocks can cause
a phenomenon known as false fragmentation, where there is a lot of available free
memory chopped up into small, unusable free blocks. For example, Figure 9.38
shows the result of freeing the block that was allocated in Figure 9.37. The result
is two adjacent free blocks with payloads of three words each. As a result, a
subsequent request for a payload of four words would fail, even though the
aggregate size of the two free blocks is large enough to satisfy the request.

To combat false fragmentation, any practical allocator must merge adjacent
free blocks in a process known as coalescing. This raises an important policy
decision about when to perform coalescing. The allocator can opt for immediate
coalescing by merging any adjacent blocks each time a block is freed. Or it can opt
for deferred coalescing by waiting to coalesce free blocks at some later time. For
example, the allocator might defer coalescing until some allocation request fails,
and then scan the entire heap, coalescing all free blocks.

Immediate coalescing is straightforward and can be performed in constant
time, but with some request patterns it can introduce a form of thrashing where a
block is repeatedly coalesced and then split soon thereafter. For example, in Fig-
ure 9.38 a repeated pattern of allocating and freeing a three-word block would
introduce a lot of unnecessary splitting and coalescing. In our discussion of allo-
cators, we will assume immediate coalescing, but you should be aware that fast
allocators often opt for some form of deferred coalescing.

9.9.11 Coalescing with Boundary Tags

How does an allocator implement coalescing? Let us refer to the block we want
to free as the current block. Then coalescing the next free block (in memory) is
straightforward and efficient. The header of the current block points to the header
of the next block, which can be checked to determine if the next block is free. If
so, its size is simply added to the size of the current header and the blocks are
coalesced in constant time.

But how would we coalesce the previous block? Given an implicit free list of
blocks with headers, the only option would be to search the entire list, remember-
ing the location of the previous block, until we reached the current block. With an

Section 9.9 Dynamic Memory Allocation 825

Figure 9.39
Format of heap block that
uses a boundary tag.

Block size

Payload
(allocated block only)

Padding (optional)

a/f
a = 001: Allocated
a = 000: Free

Block size a/f

31 3 2 1 0

Header

Footer

implicit free list, this means that each call to freewould require time linear in the
size of the heap. Even with more sophisticated free list organizations, the search
time would not be constant.

Knuth developed a clever and general technique, known as boundary tags,
that allows for constant-time coalescing of the previous block. The idea, which is
shown in Figure 9.39, is to add a footer (the boundary tag) at the end of each block,
where the footer is a replica of the header. If each block includes such a footer,
then the allocator can determine the starting location and status of the previous
block by inspecting its footer, which is always one word away from the start of the
current block.

Consider all the cases that can exist when the allocator frees the current block:

1. The previous and next blocks are both allocated.
2. The previous block is allocated and the next block is free.
3. The previous block is free and the next block is allocated.
4. The previous and next blocks are both free.

Figure 9.40 shows how we would coalesce each of the four cases. In case 1, both
adjacent blocks are allocated and thus no coalescing is possible. So the status of the
current block is simply changed from allocated to free. In case 2, the current block
is merged with the next block. The header of the current block and the footer of
the next block are updated with the combined sizes of the current and next blocks.
In case 3, the previous block is merged with the current block. The header of the
previous block and the footer of the current block are updated with the combined
sizes of the two blocks. In case 4, all three blocks are merged to form a single
free block, with the header of the previous block and the footer of the next block
updated with the combined sizes of the three blocks. In each case, the coalescing
is performed in constant time.

The idea of boundary tags is a simple and elegant one that generalizes to
many different types of allocators and free list organizations. However, there is
a potential disadvantage. Requiring each block to contain both a header and a
footer can introduce significant memory overhead if an application manipulates

826 Chapter 9 Virtual Memory

m1 a

a
a

a
a

a

n

n

m2

m2

m1

m1 a

a
f

f
a

a

n

n

m2

m2

Case 1

m1

m1 a

a
a

a
f

f

n

n

m2

m2

m1

m1 a

a
f

f

n!m2

n!m2

m1

Case 2

m1 f

f
a

a
a

a

n

n

m2

m2

m1

n!m1 f

f
a

a

n!m1

m2

m2

Case 3

m1 f

f
a

a
f

f

n

n

m2

m2

m1

n!m1!m2 f

fn!m1!m2

Case 4

Figure 9.40 Coalescing with boundary tags. Case 1: prev and next allocated. Case 2: prev allocated, next
free. Case 3: prev free, next allocated. Case 4: next and prev free.

many small blocks. For example, if a graph application dynamically creates and
destroys graph nodes by making repeated calls tomalloc andfree, and each graph
node requires only a couple of words of memory, then the header and the footer
will consume half of each allocated block.

Fortunately, there is a clever optimization of boundary tags that eliminates
the need for a footer in allocated blocks. Recall that when we attempt to coalesce
the current block with the previous and next blocks in memory, the size field in
the footer of the previous block is only needed if the previous block is free. If we
were to store the allocated/free bit of the previous block in one of the excess low-
order bits of the current block, then allocated blocks would not need footers, and
we could use that extra space for payload. Note, however, that free blocks still
need footers.

Practice Problem 9.7
Determine the minimum block size for each of the following combinations of
alignment requirements and block formats. Assumptions: Implicit free list, zero-
sized payloads are not allowed, and headers and footers are stored in 4-byte words.

Section 9.9 Dynamic Memory Allocation 827

Alignment Allocated block Free block Minimum block size (bytes)

Single word Header and footer Header and footer
Single word Header, but no footer Header and footer
Double word Header and footer Header and footer
Double word Header, but no footer Header and footer

9.9.12 Putting It Together: Implementing a Simple Allocator

Building an allocator is a challenging task. The design space is large, with nu-
merous alternatives for block format and free list format, as well as placement,
splitting, and coalescing policies. Another challenge is that you are often forced
to program outside the safe, familiar confines of the type system, relying on the
error-prone pointer casting and pointer arithmetic that is typical of low-level sys-
tems programming.

While allocators do not require enormous amounts of code, they are subtle
and unforgiving. Students familiar with higher-level languages such as C++ or Java
often hit a conceptual wall when they first encounter this style of programming. To
help you clear this hurdle, we will work through the implementation of a simple
allocator based on an implicit free list with immediate boundary-tag coalescing.
The maximum block size is 232 = 4 GB. The code is 64-bit clean, running without
modification in 32-bit (gcc -m32) or 64-bit (gcc -m64) processes.

General Allocator Design

Our allocator uses a model of the memory system provided by the memlib.c
package shown in Figure 9.41. The purpose of the model is to allow us to run
our allocator without interfering with the existing system-level malloc package.
The mem_init function models the virtual memory available to the heap as a
large, double-word aligned array of bytes. The bytes between mem_heap and mem_
brk represent allocated virtual memory. The bytes following mem_brk represent
unallocated virtual memory. The allocator requests additional heap memory by
calling the mem_sbrk function, which has the same interface as the system’s sbrk
function, as well as the same semantics, except that it rejects requests to shrink
the heap.

The allocator itself is contained in a source file (mm.c) that users can compile
and link into their applications. The allocator exports three functions to applica-
tion programs:

1 extern int mm_init(void);

2 extern void *mm_malloc (size_t size);

3 extern void mm_free (void *ptr);

The mm_init function initializes the allocator, returning 0 if successful and
−1 otherwise. The mm_malloc and mm_free functions have the same interfaces
and semantics as their system counterparts. The allocator uses the block format

828 Chapter 9 Virtual Memory

code/vm/malloc/memlib.c
1 /* Private global variables */

2 static char *mem_heap; /* Points to first byte of heap */

3 static char *mem_brk; /* Points to last byte of heap plus 1 */

4 static char *mem_max_addr; /* Max legal heap addr plus 1*/

5

6 /*

7 * mem_init - Initialize the memory system model

8 */

9 void mem_init(void)

10 {

11 mem_heap = (char *)Malloc(MAX_HEAP);

12 mem_brk = (char *)mem_heap;

13 mem_max_addr = (char *)(mem_heap + MAX_HEAP);

14 }

15

16 /*

17 * mem_sbrk - Simple model of the sbrk function. Extends the heap

18 * by incr bytes and returns the start address of the new area. In

19 * this model, the heap cannot be shrunk.

20 */

21 void *mem_sbrk(int incr)

22 {

23 char *old_brk = mem_brk;

24

25 if ((incr < 0) || ((mem_brk + incr) > mem_max_addr)) {

26 errno = ENOMEM;

27 fprintf(stderr, "ERROR: mem_sbrk failed. Ran out of memory...\n");

28 return (void *)-1;

29 }

30 mem_brk += incr;

31 return (void *)old_brk;

32 }

code/vm/malloc/memlib.c

Figure 9.41 memlib.c: Memory system model.

shown in Figure 9.39. The minimum block size is 16 bytes. The free list is organized
as an implicit free list, with the invariant form shown in Figure 9.42.

The first word is an unused padding word aligned to a double-word boundary.
The padding is followed by a special prologue block, which is an 8-byte allocated
block consisting of only a header and a footer. The prologue block is created
during initialization and is never freed. Following the prologue block are zero
or more regular blocks that are created by calls to malloc or free. The heap

Section 9.9 Dynamic Memory Allocation 829

Prologue
block

Regular
block 1

Regular
block 2

Start
of

heap
8/1 8/1 hdr hdrftr ftr

Regular
block n

Epilogue
block hdr

hdr ftr 0/1

static char *heap_listp

Double-
word

aligned
. . .

Figure 9.42 Invariant form of the implicit free list.

always ends with a special epilogue block, which is a zero-sized allocated block
that consists of only a header. The prologue and epilogue blocks are tricks that
eliminate the edge conditions during coalescing. The allocator uses a single private
(static) global variable (heap_listp) that always points to the prologue block.
(As a minor optimization, we could make it point to the next block instead of the
prologue block.)

Basic Constants and Macros for Manipulating the Free List

Figure 9.43 shows some basic constants and macros that we will use throughout
the allocator code. Lines 2–4 define some basic size constants: the sizes of words
(WSIZE) and double words (DSIZE), and the size of the initial free block and
the default size for expanding the heap (CHUNKSIZE).

Manipulating the headers and footers in the free list can be troublesome
because it demands extensive use of casting and pointer arithmetic. Thus, we find
it helpful to define a small set of macros for accessing and traversing the free list
(lines 9–25). The PACK macro (line 9) combines a size and an allocate bit and
returns a value that can be stored in a header or footer.

The GET macro (line 12) reads and returns the word referenced by argu-
ment p. The casting here is crucial. The argument p is typically a (void *) pointer,
which cannot be dereferenced directly. Similarly, the PUT macro (line 13) stores
val in the word pointed at by argument p.

The GET_SIZE and GET_ALLOC macros (lines 16–17) return the size and
allocated bit, respectively, from a header or footer at address p. The remaining
macros operate on block pointers (denoted bp) that point to the first payload
byte. Given a block pointer bp, the HDRP and FTRP macros (lines 20–21) return
pointers to the block header and footer, respectively. The NEXT_BLKP and
PREV_BLKP macros (lines 24–25) return the block pointers of the next and
previous blocks, respectively.

The macros can be composed in various ways to manipulate the free list. For
example, given a pointer bp to the current block, we could use the following line
of code to determine the size of the next block in memory:

size_t size = GET_SIZE(HDRP(NEXT_BLKP(bp)));

830 Chapter 9 Virtual Memory

code/vm/malloc/mm.c
1 /* Basic constants and macros */

2 #define WSIZE 4 /* Word and header/footer size (bytes) */

3 #define DSIZE 8 /* Double word size (bytes) */

4 #define CHUNKSIZE (1<<12) /* Extend heap by this amount (bytes) */

5

6 #define MAX(x, y) ((x) > (y)? (x) : (y))

7

8 /* Pack a size and allocated bit into a word */

9 #define PACK(size, alloc) ((size) | (alloc))

10

11 /* Read and write a word at address p */

12 #define GET(p) (*(unsigned int *)(p))

13 #define PUT(p, val) (*(unsigned int *)(p) = (val))

14

15 /* Read the size and allocated fields from address p */

16 #define GET_SIZE(p) (GET(p) & ~0x7)

17 #define GET_ALLOC(p) (GET(p) & 0x1)

18

19 /* Given block ptr bp, compute address of its header and footer */

20 #define HDRP(bp) ((char *)(bp) - WSIZE)

21 #define FTRP(bp) ((char *)(bp) + GET_SIZE(HDRP(bp)) - DSIZE)

22

23 /* Given block ptr bp, compute address of next and previous blocks */

24 #define NEXT_BLKP(bp) ((char *)(bp) + GET_SIZE(((char *)(bp) - WSIZE)))

25 #define PREV_BLKP(bp) ((char *)(bp) - GET_SIZE(((char *)(bp) - DSIZE)))

code/vm/malloc/mm.c

Figure 9.43 Basic constants and macros for manipulating the free list.

Creating the Initial Free List

Before calling mm_malloc or mm_free, the application must initialize the heap
by calling the mm_init function (Figure 9.44). The mm_init function gets four
words from the memory system and initializes them to create the empty free list
(lines 4–10). It then calls the extend_heap function (Figure 9.45), which extends
the heap by CHUNKSIZE bytes and creates the initial free block. At this point,
the allocator is initialized and ready to accept allocate and free requests from the
application.

The extend_heap function is invoked in two different circumstances: (1) when
the heap is initialized, and (2) when mm_malloc is unable to find a suitable fit. To
maintain alignment, extend_heap rounds up the requested size to the nearest
multiple of 2 words (8 bytes), and then requests the additional heap space from
the memory system (lines 7–9).

The remainder of the extend_heap function (lines 12–17) is somewhat subtle.
The heap begins on a double-word aligned boundary, and every call to extend_
heap returns a block whose size is an integral number of double words. Thus, every

Section 9.9 Dynamic Memory Allocation 831

code/vm/malloc/mm.c
1 int mm_init(void)

2 {

3 /* Create the initial empty heap */

4 if ((heap_listp = mem_sbrk(4*WSIZE)) == (void *)-1)

5 return -1;

6 PUT(heap_listp, 0); /* Alignment padding */

7 PUT(heap_listp + (1*WSIZE), PACK(DSIZE, 1)); /* Prologue header */

8 PUT(heap_listp + (2*WSIZE), PACK(DSIZE, 1)); /* Prologue footer */

9 PUT(heap_listp + (3*WSIZE), PACK(0, 1)); /* Epilogue header */

10 heap_listp += (2*WSIZE);

11

12 /* Extend the empty heap with a free block of CHUNKSIZE bytes */

13 if (extend_heap(CHUNKSIZE/WSIZE) == NULL)

14 return -1;

15 return 0;

16 }

code/vm/malloc/mm.c

Figure 9.44 mm_init: Creates a heap with an initial free block.

code/vm/malloc/mm.c
1 static void *extend_heap(size_t words)

2 {

3 char *bp;

4 size_t size;

5

6 /* Allocate an even number of words to maintain alignment */

7 size = (words % 2) ? (words+1) * WSIZE : words * WSIZE;

8 if ((long)(bp = mem_sbrk(size)) == -1)

9 return NULL;

10

11 /* Initialize free block header/footer and the epilogue header */

12 PUT(HDRP(bp), PACK(size, 0)); /* Free block header */

13 PUT(FTRP(bp), PACK(size, 0)); /* Free block footer */

14 PUT(HDRP(NEXT_BLKP(bp)), PACK(0, 1)); /* New epilogue header */

15

16 /* Coalesce if the previous block was free */

17 return coalesce(bp);

18 }

code/vm/malloc/mm.c

Figure 9.45 extend_heap: Extends the heap with a new free block.

832 Chapter 9 Virtual Memory

call to mem_sbrk returns a double-word aligned chunk of memory immediately
following the header of the epilogue block. This header becomes the header of
the new free block (line 12), and the last word of the chunk becomes the new
epilogue block header (line 14). Finally, in the likely case that the previous heap
was terminated by a free block, we call the coalesce function to merge the two
free blocks and return the block pointer of the merged blocks (line 17).

Freeing and Coalescing Blocks

An application frees a previously allocated block by calling the mm_free function
(Figure 9.46), which frees the requested block (bp) and then merges adjacent free
blocks using the boundary-tags coalescing technique described in Section 9.9.11.

The code in the coalescehelper function is a straightforward implementation
of the four cases outlined in Figure 9.40. There is one somewhat subtle aspect. The
free list format we have chosen—with its prologue and epilogue blocks that are
always marked as allocated—allows us to ignore the potentially troublesome edge
conditions where the requested block bp is at the beginning or end of the heap.
Without these special blocks, the code would be messier, more error prone, and
slower, because we would have to check for these rare edge conditions on each
and every free request.

Allocating Blocks

An application requests a block of size bytes of memory by calling the mm_malloc
function (Figure 9.47). After checking for spurious requests, the allocator must
adjust the requested block size to allow room for the header and the footer, and to
satisfy the double-word alignment requirement. Lines 12–13 enforce the minimum
block size of 16 bytes: 8 bytes to satisfy the alignment requirement, and 8 more
for the overhead of the header and footer. For requests over 8 bytes (line 15),
the general rule is to add in the overhead bytes and then round up to the nearest
multiple of 8.

Once the allocator has adjusted the requested size, it searches the free list for a
suitable free block (line 18). If there is a fit, then the allocator places the requested
block and optionally splits the excess (line 19), and then returns the address of the
newly allocated block.

If the allocator cannot find a fit, it extends the heap with a new free block
(lines 24–26), places the requested block in the new free block, optionally splitting
the block (line 27), and then returns a pointer to the newly allocated block.

Practice Problem 9.8
Implement a find_fit function for the simple allocator described in Section
9.9.12.

static void *find_fit(size_t asize)

Your solution should perform a first-fit search of the implicit free list.

Section 9.9 Dynamic Memory Allocation 833

code/vm/malloc/mm.c
1 void mm_free(void *bp)

2 {

3 size_t size = GET_SIZE(HDRP(bp));

4

5 PUT(HDRP(bp), PACK(size, 0));

6 PUT(FTRP(bp), PACK(size, 0));

7 coalesce(bp);

8 }

9

10 static void *coalesce(void *bp)

11 {

12 size_t prev_alloc = GET_ALLOC(FTRP(PREV_BLKP(bp)));

13 size_t next_alloc = GET_ALLOC(HDRP(NEXT_BLKP(bp)));

14 size_t size = GET_SIZE(HDRP(bp));

15

16 if (prev_alloc && next_alloc) { /* Case 1 */

17 return bp;

18 }

19

20 else if (prev_alloc && !next_alloc) { /* Case 2 */

21 size += GET_SIZE(HDRP(NEXT_BLKP(bp)));

22 PUT(HDRP(bp), PACK(size, 0));

23 PUT(FTRP(bp), PACK(size,0));

24 }

25

26 else if (!prev_alloc && next_alloc) { /* Case 3 */

27 size += GET_SIZE(HDRP(PREV_BLKP(bp)));

28 PUT(FTRP(bp), PACK(size, 0));

29 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));

30 bp = PREV_BLKP(bp);

31 }

32

33 else { /* Case 4 */

34 size += GET_SIZE(HDRP(PREV_BLKP(bp))) +

35 GET_SIZE(FTRP(NEXT_BLKP(bp)));

36 PUT(HDRP(PREV_BLKP(bp)), PACK(size, 0));

37 PUT(FTRP(NEXT_BLKP(bp)), PACK(size, 0));

38 bp = PREV_BLKP(bp);

39 }

40 return bp;

41 }

code/vm/malloc/mm.c

Figure 9.46 mm_free: Frees a block and uses boundary-tag coalescing to merge it
with any adjacent free blocks in constant time.

834 Chapter 9 Virtual Memory

code/vm/malloc/mm.c
1 void *mm_malloc(size_t size)

2 {

3 size_t asize; /* Adjusted block size */

4 size_t extendsize; /* Amount to extend heap if no fit */

5 char *bp;

6

7 /* Ignore spurious requests */

8 if (size == 0)

9 return NULL;

10

11 /* Adjust block size to include overhead and alignment reqs. */

12 if (size <= DSIZE)

13 asize = 2*DSIZE;

14 else

15 asize = DSIZE * ((size + (DSIZE) + (DSIZE-1)) / DSIZE);

16

17 /* Search the free list for a fit */

18 if ((bp = find_fit(asize)) != NULL) {

19 place(bp, asize);

20 return bp;

21 }

22

23 /* No fit found. Get more memory and place the block */

24 extendsize = MAX(asize,CHUNKSIZE);

25 if ((bp = extend_heap(extendsize/WSIZE)) == NULL)

26 return NULL;

27 place(bp, asize);

28 return bp;

29 }

code/vm/malloc/mm.c

Figure 9.47 mm_malloc: Allocates a block from the free list.

Practice Problem 9.9
Implement a place function for the example allocator.

static void place(void *bp, size_t asize)

Your solution should place the requested block at the beginning of the free block,
splitting only if the size of the remainder would equal or exceed the minimum
block size.

Section 9.9 Dynamic Memory Allocation 835

Block size

Payload

(a) Allocated block

Padding (optional)

a/f

Block size a/f

31 3 2 1 0

Header

Footer

Block size

pred (Predecessor)

(b) Free block

succ (Successor)

Padding (optional)

a/f

Block size a/f

31 3 2 1 0

Header

Old payload

Footer

Figure 9.48 Format of heap blocks that use doubly linked free lists.

9.9.13 Explicit Free Lists

The implicit free list provides us with a simple way to introduce some basic
allocator concepts. However, because block allocation time is linear in the total
number of heap blocks, the implicit free list is not appropriate for a general-
purpose allocator (although it might be fine for a special-purpose allocator where
the number of heap blocks is known beforehand to be small).

A better approach is to organize the free blocks into some form of explicit
data structure. Since by definition the body of a free block is not needed by the
program, the pointers that implement the data structure can be stored within the
bodies of the free blocks. For example, the heap can be organized as a doubly
linked free list by including a pred (predecessor) and succ (successor) pointer in
each free block, as shown in Figure 9.48.

Using a doubly linked list instead of an implicit free list reduces the first fit
allocation time from linear in the total number of blocks to linear in the number
of free blocks. However, the time to free a block can be either linear or constant,
depending on the policy we choose for ordering the blocks in the free list.

One approach is to maintain the list in last-in first-out (LIFO) order by insert-
ing newly freed blocks at the beginning of the list. With a LIFO ordering and a
first fit placement policy, the allocator inspects the most recently used blocks first.
In this case, freeing a block can be performed in constant time. If boundary tags
are used, then coalescing can also be performed in constant time.

Another approach is to maintain the list in address order, where the address
of each block in the list is less than the address of its successor. In this case, freeing
a block requires a linear-time search to locate the appropriate predecessor. The
trade-off is that address-ordered first fit enjoys better memory utilization than
LIFO-ordered first fit, approaching the utilization of best fit.

A disadvantage of explicit lists in general is that free blocks must be large
enough to contain all of the necessary pointers, as well as the header and possibly
a footer. This results in a larger minimum block size, and increases the potential
for internal fragmentation.

836 Chapter 9 Virtual Memory

9.9.14 Segregated Free Lists

As we have seen, an allocator that uses a single linked list of free blocks requires
time linear in the number of free blocks to allocate a block. A popular approach for
reducing the allocation time, known generally as segregated storage, is to maintain
multiple free lists, where each list holds blocks that are roughly the same size. The
general idea is to partition the set of all possible block sizes into equivalence classes
called size classes. There are many ways to define the size classes. For example, we
might partition the block sizes by powers of two:

{1}, {2}, {3, 4}, {5−8}, . . . , {1025−2048}, {2049−4096}, {4097−∞}

Or we might assign small blocks to their own size classes and partition large blocks
by powers of two:

{1}, {2}, {3}, . . . , {1023}, {1024}, {1025−2048}, {2049 − 4096}, {4097−∞}

The allocator maintains an array of free lists, with one free list per size class,
ordered by increasing size. When the allocator needs a block of size n, it searches
the appropriate free list. If it cannot find a block that fits, it searches the next list,
and so on.

The dynamic storage allocation literature describes dozens of variants of seg-
regated storage that differ in how they define size classes, when they perform
coalescing, when they request additional heap memory from the operating sys-
tem, whether they allow splitting, and so forth. To give you a sense of what is
possible, we will describe two of the basic approaches: simple segregated storage
and segregated fits.

Simple Segregated Storage

With simple segregated storage, the free list for each size class contains same-sized
blocks, each the size of the largest element of the size class. For example, if some
size class is defined as {17−32}, then the free list for that class consists entirely of
blocks of size 32.

To allocate a block of some given size, we check the appropriate free list. If the
list is not empty, we simply allocate the first block in its entirety. Free blocks are
never split to satisfy allocation requests. If the list is empty, the allocator requests
a fixed-sized chunk of additional memory from the operating system (typically
a multiple of the page size), divides the chunk into equal-sized blocks, and links
the blocks together to form the new free list. To free a block, the allocator simply
inserts the block at the front of the appropriate free list.

There are a number of advantages to this simple scheme. Allocating and
freeing blocks are both fast constant-time operations. Further, the combination
of the same-sized blocks in each chunk, no splitting, and no coalescing means that
there is very little per-block memory overhead. Since each chunk has only same-
sized blocks, the size of an allocated block can be inferred from its address. Since
there is no coalescing, allocated blocks do not need an allocated/free flag in the
header. Thus, allocated blocks require no headers, and since there is no coalescing,

Section 9.9 Dynamic Memory Allocation 837

they do not require any footers either. Since allocate and free operations insert
and delete blocks at the beginning of the free list, the list need only be singly
linked instead of doubly linked. The bottom line is that the only required field in
any block is a one-word succ pointer in each free block, and thus the minimum
block size is only one word.

A significant disadvantage is that simple segregated storage is susceptible to
internal and external fragmentation. Internal fragmentation is possible because
free blocks are never split. Worse, certain reference patterns can cause extreme
external fragmentation because free blocks are never coalesced (Problem 9.10).

Practice Problem 9.10
Describe a reference pattern that results in severe external fragmentation in an
allocator based on simple segregated storage.

Segregated Fits

With this approach, the allocator maintains an array of free lists. Each free list is
associated with a size class and is organized as some kind of explicit or implicit
list. Each list contains potentially different-sized blocks whose sizes are members
of the size class. There are many variants of segregated fits allocators. Here we
describe a simple version.

To allocate a block, we determine the size class of the request and do a first-
fit search of the appropriate free list for a block that fits. If we find one, then we
(optionally) split it and insert the fragment in the appropriate free list. If we cannot
find a block that fits, then we search the free list for the next larger size class. We
repeat until we find a block that fits. If none of the free lists yields a block that fits,
then we request additional heap memory from the operating system, allocate the
block out of this new heap memory, and place the remainder in the appropriate
size class. To free a block, we coalesce and place the result on the appropriate free
list.

The segregated fits approach is a popular choice with production-quality
allocators such as the GNU malloc package provided in the C standard library
because it is both fast and memory efficient. Search times are reduced because
searches are limited to particular parts of the heap instead of the entire heap.
Memory utilization can improve because of the interesting fact that a simple first-
fit search of a segregated free list approximates a best-fit search of the entire heap.

Buddy Systems

A buddy system is a special case of segregated fits where each size class is a power
of two. The basic idea is that given a heap of 2m words, we maintain a separate free
list for each block size 2k, where 0 ≤ k ≤ m. Requested block sizes are rounded up
to the nearest power of two. Originally, there is one free block of size 2m words.

To allocate a block of size 2k, we find the first available block of size 2j , such
that k ≤ j ≤ m. If j = k, then we are done. Otherwise, we recursively split the

838 Chapter 9 Virtual Memory

block in half until j = k. As we perform this splitting, each remaining half (known
as a buddy) is placed on the appropriate free list. To free a block of size 2k, we
continue coalescing with the free. When we encounter an allocated buddy, we stop
the coalescing.

A key fact about buddy systems is that given the address and size of a block,
it is easy to compute the address of its buddy. For example, a block of size 32 byes
with address

xxx...x00000

has its buddy at address

xxx...x10000

In other words, the addresses of a block and its buddy differ in exactly one bit
position.

The major advantage of a buddy system allocator is its fast searching and
coalescing. The major disadvantage is that the power-of-two requirement on the
block size can cause significant internal fragmentation. For this reason, buddy
system allocators are not appropriate for general-purpose workloads. However,
for certain application-specific workloads, where the block sizes are known in
advance to be powers of two, buddy system allocators have a certain appeal.

9.10 Garbage Collection

With an explicit allocator such as the C malloc package, an application allocates
and frees heap blocks by making calls to malloc and free. It is the application’s
responsibility to free any allocated blocks that it no longer needs.

Failing to free allocated blocks is a common programming error. For example,
consider the following C function that allocates a block of temporary storage as
part of its processing:

1 void garbage()

2 {

3 int *p = (int *)Malloc(15213);

4

5 return; /* Array p is garbage at this point */

6 }

Since p is no longer needed by the program, it should have been freed before
garbage returned. Unfortunately, the programmer has forgotten to free the block.
It remains allocated for the lifetime of the program, needlessly occupying heap
space that could be used to satisfy subsequent allocation requests.

A garbage collector is a dynamic storage allocator that automatically frees al-
located blocks that are no longer needed by the program. Such blocks are known
as garbage (hence the term garbage collector). The process of automatically re-
claiming heap storage is known as garbage collection. In a system that supports

Section 9.10 Garbage Collection 839

garbage collection, applications explicitly allocate heap blocks but never explic-
itly free them. In the context of a C program, the application calls malloc, but
never calls free. Instead, the garbage collector periodically identifies the garbage
blocks and makes the appropriate calls to free to place those blocks back on the
free list.

Garbage collection dates back to Lisp systems developed by John McCarthy
at MIT in the early 1960s. It is an important part of modern language systems such
as Java, ML, Perl, and Mathematica, and it remains an active and important area of
research. The literature describes an amazing number of approaches for garbage
collection. We will limit our discussion to McCarthy’s original Mark&Sweep al-
gorithm, which is interesting because it can be built on top of an existing malloc
package to provide garbage collection for C and C++ programs.

9.10.1 Garbage Collector Basics

A garbage collector views memory as a directed reachability graph of the form
shown in Figure 9.49. The nodes of the graph are partitioned into a set of root
nodes and a set of heap nodes. Each heap node corresponds to an allocated block
in the heap. A directed edge p → q means that some location in block p points to
some location in block q. Root nodes correspond to locations not in the heap that
contain pointers into the heap. These locations can be registers, variables on the
stack, or global variables in the read-write data area of virtual memory.

We say that a node p is reachable if there exists a directed path from any root
node to p. At any point in time, the unreachable nodes correspond to garbage that
can never be used again by the application. The role of a garbage collector is to
maintain some representation of the reachability graph and periodically reclaim
the unreachable nodes by freeing them and returning them to the free list.

Garbage collectors for languages like ML and Java, which exert tight con-
trol over how applications create and use pointers, can maintain an exact repre-
sentation of the reachability graph, and thus can reclaim all garbage. However,
collectors for languages like C and C++ cannot in general maintain exact repre-
sentations of the reachability graph. Such collectors are known as conservative
garbage collectors. They are conservative in the sense that each reachable block

Root nodes

Heap nodes

Reachable

Unreachable
(garbage)

Figure 9.49 A garbage collector’s view of memory as a directed graph.

840 Chapter 9 Virtual Memory

C application
program malloc()

Conservative
garbage
collector

free()

Dynamic storage allocator

Figure 9.50 Integrating a conservative garbage collector and a C malloc package.

is correctly identified as reachable, while some unreachable nodes might be incor-
rectly identified as reachable.

Collectors can provide their service on demand, or they can run as separate
threads in parallel with the application, continuously updating the reachability
graph and reclaiming garbage. For example, consider how we might incorporate a
conservative collector for C programs into an existing malloc package, as shown
in Figure 9.50.

The application calls malloc in the usual manner whenever it needs heap
space. If malloc is unable to find a free block that fits, then it calls the garbage col-
lector in hopes of reclaiming some garbage to the free list. The collector identifies
the garbage blocks and returns them to the heap by calling the free function. The
key idea is that the collector calls free instead of the application. When the call
to the collector returns, malloc tries again to find a free block that fits. If that fails,
then it can ask the operating system for additional memory. Eventually malloc
returns a pointer to the requested block (if successful) or the NULL pointer (if
unsuccessful).

9.10.2 Mark&Sweep Garbage Collectors

A Mark&Sweep garbage collector consists of a mark phase, which marks all
reachable and allocated descendants of the root nodes, followed by a sweep phase,
which frees each unmarked allocated block. Typically, one of the spare low-order
bits in the block header is used to indicate whether a block is marked or not.

Our description of Mark&Sweep will assume the following functions, where
ptr is defined as typedef void *ptr.

. ptr isPtr(ptr p): If p points to some word in an allocated block, returns a
pointer b to the beginning of that block. Returns NULL otherwise.

. int blockMarked(ptr b): Returns true if block b is already marked.

. int blockAllocated(ptr b): Returns true if block b is allocated.

. void markBlock(ptr b): Marks block b.

. int length(ptr b): Returns the length in words (excluding the header) of
block b.

. void unmarkBlock(ptr b): Changes the status of block b from marked to
unmarked.

. ptr nextBlock(ptr b): Returns the successor of block b in the heap.

Section 9.10 Garbage Collection 841

(a) mark function

void mark(ptr p) {

if ((b = isPtr(p)) == NULL)

return;

if (blockMarked(b))

return;

markBlock(b);

len = length(b);

for (i=0; i < len; i++)

mark(b[i]);

return;

}

(b) sweep function

void sweep(ptr b, ptr end) {

while (b < end) {

if (blockMarked(b))

unmarkBlock(b);

else if (blockAllocated(b))

free(b);

b = nextBlock(b);

}

return;

}

Figure 9.51 Pseudo-code for the mark and sweep functions.

The mark phase calls the mark function shown in Figure 9.51(a) once for each root
node. The mark function returns immediately if p does not point to an allocated
and unmarked heap block. Otherwise, it marks the block and calls itself recursively
on each word in block. Each call to the mark function marks any unmarked and
reachable descendants of some root node. At the end of the mark phase, any
allocated block that is not marked is guaranteed to be unreachable and, hence,
garbage that can be reclaimed in the sweep phase.

The sweep phase is a single call to the sweep function shown in Figure 9.51(b).
The sweep function iterates over each block in the heap, freeing any unmarked
allocated blocks (i.e., garbage) that it encounters.

Figure 9.52 shows a graphical interpretation of Mark&Sweep for a small heap.
Block boundaries are indicated by heavy lines. Each square corresponds to a
word of memory. Each block has a one-word header, which is either marked or
unmarked.

1 2 3 4 5 6

Before mark:

Root

After mark:

Unmarked block
header

Marked block
header

After sweep: FreeFree

Figure 9.52 Mark and sweep example. Note that the arrows in this example denote
memory references, and not free list pointers.

842 Chapter 9 Virtual Memory

Initially, the heap in Figure 9.52 consists of six allocated blocks, each of which
is unmarked. Block 3 contains a pointer to block 1. Block 4 contains pointers
to blocks 3 and 6. The root points to block 4. After the mark phase, blocks 1,
3, 4, and 6 are marked because they are reachable from the root. Blocks 2 and
5 are unmarked because they are unreachable. After the sweep phase, the two
unreachable blocks are reclaimed to the free list.

9.10.3 Conservative Mark&Sweep for C Programs

Mark&Sweep is an appropriate approach for garbage collecting C programs be-
cause it works in place without moving any blocks. However, the C language poses
some interesting challenges for the implementation of the isPtr function.

First, C does not tag memory locations with any type information. Thus, there
is no obvious way for isPtr to determine if its input parameter p is a pointer or not.
Second, even if we were to know that p was a pointer, there would be no obvious
way for isPtr to determine whether p points to some location in the payload of
an allocated block.

One solution to the latter problem is to maintain the set of allocated blocks
as a balanced binary tree that maintains the invariant that all blocks in the left
subtree are located at smaller addresses and all blocks in the right subtree are
located in larger addresses. As shown in Figure 9.53, this requires two additional
fields (left and right) in the header of each allocated block. Each field points to
the header of some allocated block.

The isPtr(ptr p) function uses the tree to perform a binary search of the
allocated blocks. At each step, it relies on the size field in the block header to
determine if p falls within the extent of the block.

The balanced tree approach is correct in the sense that it is guaranteed to mark
all of the nodes that are reachable from the roots. This is a necessary guarantee,
as application users would certainly not appreciate having their allocated blocks
prematurely returned to the free list. However, it is conservative in the sense that
it may incorrectly mark blocks that are actually unreachable, and thus it may fail
to free some garbage. While this does not affect the correctness of application
programs, it can result in unnecessary external fragmentation.

The fundamental reason that Mark&Sweep collectors for C programs must
be conservative is that the C language does not tag memory locations with type
information. Thus, scalars like ints or floats can masquerade as pointers. For
example, suppose that some reachable allocated block contains an int in its
payload whose value happens to correspond to an address in the payload of some
other allocated block b. There is no way for the collector to infer that the data is
really an int and not a pointer. Therefore, the allocator must conservatively mark
block b as reachable, when in fact it might not be.

Figure 9.53
Left and right pointers
in a balanced tree of
allocated blocks.

Size Left Right Remainder of block

Allocated block header

" #

Section 9.11 Common Memory-Related Bugs in C Programs 843

9.11 Common Memory-Related Bugs in C Programs

Managing and using virtual memory can be a difficult and error-prone task for C
programmers. Memory-related bugs are among the most frightening because they
often manifest themselves at a distance, in both time and space, from the source of
the bug. Write the wrong data to the wrong location, and your program can run for
hours before it finally fails in some distant part of the program. We conclude our
discussion of virtual memory with a discussion of some of the common memory-
related bugs.

9.11.1 Dereferencing Bad Pointers

As we learned in Section 9.7.2, there are large holes in the virtual address space of a
process that are not mapped to any meaningful data. If we attempt to dereference
a pointer into one of these holes, the operating system will terminate our program
with a segmentation exception. Also, some areas of virtual memory are read-only.
Attempting to write to one of these areas terminates the program with a protection
exception.

A common example of dereferencing a bad pointer is the classic scanf bug.
Suppose we want to use scanf to read an integer from stdin into a variable.
The correct way to do this is to pass scanf a format string and the address of the
variable:

scanf("%d", &val)

However, it is easy for new C programmers (and experienced ones too!) to pass
the contents of val instead of its address:

scanf("%d", val)

In this case, scanf will interpret the contents of val as an address and attempt to
write a word to that location. In the best case, the program terminates immediately
with an exception. In the worst case, the contents of val correspond to some
valid read/write area of virtual memory, and we overwrite memory, usually with
disastrous and baffling consequences much later.

9.11.2 Reading Uninitialized Memory

While bss memory locations (such as uninitialized global C variables) are always
initialized to zeros by the loader, this is not true for heap memory. A common
error is to assume that heap memory is initialized to zero:

1 /* Return y = Ax */

2 int *matvec(int **A, int *x, int n)

3 {

4 int i, j;

5

6 int *y = (int *)Malloc(n * sizeof(int));

7

844 Chapter 9 Virtual Memory

8 for (i = 0; i < n; i++)

9 for (j = 0; j < n; j++)

10 y[i] += A[i][j] * x[j];

11 return y;

12 }

In this example, the programmer has incorrectly assumed that vector y has been
initialized to zero. A correct implementation would explicitly zero y[i], or use
calloc.

9.11.3 Allowing Stack Buffer Overflows

As we saw in Section 3.12, a program has a buffer overflow bug if it writes to a target
buffer on the stack without examining the size of the input string. For example,
the following function has a buffer overflow bug because the gets function copies
an arbitrary length string to the buffer. To fix this, we would need to use the fgets
function, which limits the size of the input string.

1 void bufoverflow()

2 {

3 char buf[64];

4

5 gets(buf); /* Here is the stack buffer overflow bug */

6 return;

7 }

9.11.4 Assuming that Pointers and the Objects They Point to Are the
Same Size

One common mistake is to assume that pointers to objects are the same size as
the objects they point to:

1 /* Create an nxm array */

2 int **makeArray1(int n, int m)

3 {

4 int i;

5 int **A = (int **)Malloc(n * sizeof(int));

6

7 for (i = 0; i < n; i++)

8 A[i] = (int *)Malloc(m * sizeof(int));

9 return A;

10 }

The intent here is to create an array of n pointers, each of which points to an array
of m ints. However, because the programmer has written sizeof(int) instead
of sizeof(int *) in line 5, the code actually creates an array of ints.

This code will run fine on machines where ints and pointers to ints are the
same size. But if we run this code on a machine like the Core i7, where a pointer is

Section 9.11 Common Memory-Related Bugs in C Programs 845

larger than an int, then the loop in lines 7–8 will write past the end of the A array.
Since one of these words will likely be the boundary tag footer of the allocated
block, we may not discover the error until we free the block much later in the
program, at which point the coalescing code in the allocator will fail dramatically
and for no apparent reason. This is an insidious example of the kind of “action at
a distance” that is so typical of memory-related programming bugs.

9.11.5 Making Off-by-One Errors

Off-by-one errors are another common source of overwriting bugs:

1 /* Create an nxm array */

2 int **makeArray2(int n, int m)

3 {

4 int i;

5 int **A = (int **)Malloc(n * sizeof(int *));

6

7 for (i = 0; i <= n; i++)

8 A[i] = (int *)Malloc(m * sizeof(int));

9 return A;

10 }

This is another version of the program in the previous section. Here we have
created an n-element array of pointers in line 5, but then tried to initialize n + 1 of
its elements in lines 7 and 8, in the process overwriting some memory that follows
the A array.

9.11.6 Referencing a Pointer Instead of the Object It Points to

If we are not careful about the precedence and associativity of C operators, then
we incorrectly manipulate a pointer instead of the object it points to. For example,
consider the following function, whose purpose is to remove the first item in a
binary heap of *size items, and then reheapify the remaining *size - 1 items:

1 int *binheapDelete(int **binheap, int *size)

2 {

3 int *packet = binheap[0];

4

5 binheap[0] = binheap[*size - 1];

6 *size--; /* This should be (*size)-- */

7 heapify(binheap, *size, 0);

8 return(packet);

9 }

In line 6, the intent is to decrement the integer value pointed to by thesizepointer.
However, because the unary -- and * operators have the same precedence and
associate from right to left, the code in line 6 actually decrements the pointer

846 Chapter 9 Virtual Memory

itself instead of the integer value that it points to. If we are lucky, the program will
crash immediately; but more likely we will be left scratching our heads when the
program produces an incorrect answer much later in its execution. The moral here
is to use parentheses whenever in doubt about precedence and associativity. For
example, in line 6 we should have clearly stated our intent by using the expression
(*size)--.

9.11.7 Misunderstanding Pointer Arithmetic

Another common mistake is to forget that arithmetic operations on pointers are
performed in units that are the size of the objects they point to, which are not
necessarily bytes. For example, the intent of the following function is to scan an
array of ints and return a pointer to the first occurrence of val:

1 int *search(int *p, int val)

2 {

3 while (*p && *p != val)

4 p += sizeof(int); /* Should be p++ */

5 return p;

6 }

However, because line 4 increments the pointer by 4 (the number of bytes in an
integer) each time through the loop, the function incorrectly scans every fourth
integer in the array.

9.11.8 Referencing Nonexistent Variables

Naive C programmers who do not understand the stack discipline will sometimes
reference local variables that are no longer valid, as in the following example:

1 int *stackref ()

2 {

3 int val;

4

5 return &val;

6 }

This function returns a pointer (say, p) to a local variable on the stack and then
pops its stack frame. Although p still points to a valid memory address, it no longer
points to a valid variable. When other functions are called later in the program, the
memory will be reused for their stack frames. Later, if the program assigns some
value to *p, then it might actually be modifying an entry in another function’s
stack frame, with potentially disastrous and baffling consequences.

Section 9.11 Common Memory-Related Bugs in C Programs 847

9.11.9 Referencing Data in Free Heap Blocks

A similar error is to reference data in heap blocks that have already been freed.
For example, consider the following example, which allocates an integer array x in
line 6, prematurely frees block x in line 10, and then later references it in line 14:

1 int *heapref(int n, int m)

2 {

3 int i;

4 int *x, *y;

5

6 x = (int *)Malloc(n * sizeof(int));

7

8 /* ... */ /* Other calls to malloc and free go here */

9

10 free(x);

11

12 y = (int *)Malloc(m * sizeof(int));

13 for (i = 0; i < m; i++)

14 y[i] = x[i]++; /* Oops! x[i] is a word in a free block */

15

16 return y;

17 }

Depending on the pattern of malloc and free calls that occur between lines 6
and 10, when the program references x[i] in line 14, the array x might be part
of some other allocated heap block and have been overwritten. As with many
memory-related bugs, the error will only become evident later in the program
when we notice that the values in y are corrupted.

9.11.10 Introducing Memory Leaks

Memory leaks are slow, silent killers that occur when programmers inadvertently
create garbage in the heap by forgetting to free allocated blocks. For example, the
following function allocates a heap block x and then returns without freeing it:

1 void leak(int n)

2 {

3 int *x = (int *)Malloc(n * sizeof(int));

4

5 return; /* x is garbage at this point */

6 }

If leak is called frequently, then the heap will gradually fill up with garbage,
in the worst case consuming the entire virtual address space. Memory leaks are
particularly serious for programs such as daemons and servers, which by definition
never terminate.

848 Chapter 9 Virtual Memory

9.12 Summary

Virtual memory is an abstraction of main memory. Processors that support virtual
memory reference main memory using a form of indirection known as virtual ad-
dressing. The processor generates a virtual address, which is translated into a phys-
ical address before being sent to the main memory. The translation of addresses
from a virtual address space to a physical address space requires close cooperation
between hardware and software. Dedicated hardware translates virtual addresses
using page tables whose contents are supplied by the operating system.

Virtual memory provides three important capabilities. First, it automatically
caches recently used contents of the virtual address space stored on disk in main
memory. The block in a virtual memory cache is known as a page. A reference
to a page on disk triggers a page fault that transfers control to a fault handler
in the operating system. The fault handler copies the page from disk to the main
memory cache, writing back the evicted page if necessary. Second, virtual memory
simplifies memory management, which in turn simplifies linking, sharing data
between processes, the allocation of memory for processes, and program loading.
Finally, virtual memory simplifies memory protection by incorporating protection
bits into every page table entry.

The process of address translation must be integrated with the operation of
any hardware caches in the system. Most page table entries are located in the L1
cache, but the cost of accessing page table entries from L1 is usually eliminated
by an on-chip cache of page table entries called a TLB.

Modern systems initialize chunks of virtual memory by associating them with
chunks of files on disk, a process known as memory mapping. Memory mapping
provides an efficient mechanism for sharing data, creating new processes, and
loading programs. Applications can manually create and delete areas of the virtual
address space using the mmap function. However, most programs rely on a dynamic
memory allocator such as malloc, which manages memory in an area of the virtual
address space called the heap. Dynamic memory allocators are application-level
programs with a system-level feel, directly manipulating memory without much
help from the type system. Allocators come in two flavors. Explicit allocators
require applications to explicitly free their memory blocks. Implicit allocators
(garbage collectors) free any unused and unreachable blocks automatically.

Managing and using memory is a difficult and error-prone task for C program-
mers. Examples of common errors include dereferencing bad pointers, reading
uninitialized memory, allowing stack buffer overflows, assuming that pointers and
the objects they point to are the same size, referencing a pointer instead of the
object it points to, misunderstanding pointer arithmetic, referencing nonexistent
variables, and introducing memory leaks.

Bibliographic Notes

Kilburn and his colleagues published the first description of virtual memory [60].
Architecture texts contain additional details about the hardware’s role in virtual
memory [49]. Operating systems texts contain additional information about the
operating system’s role [98, 104, 112]. Bovet and Cesati [11] give a detailed de-

