Lecture 14: NN Regression
Neural Network Regression Demo
This is a demo code for Neural Network Regression using PyTorch.
NN Regression Demo
# %% [markdown]
# The code is adapted from [Here](https://medium.com/@benjamin.phillips22/simple-regression-with-neural-networks-in-pytorch-313f06910379).
# %%
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt
import matplotlib
matplotlib.use('TKAgg')
# %matplotlib inline
device = 'cuda' if torch.cuda.is_available() else 'cpu'
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
x = x.to(device, dtype=torch.float32)
y = y.to(device, dtype=torch.float32)
train_size = 80
train_input = x[:train_size]
train_targets = y[:train_size]
# view data
plt.figure(figsize=(10, 4))
plt.scatter(x.data.cpu().numpy(), y.data.cpu().numpy(), color="orange")
plt.title('X')
plt.xlabel('Input')
plt.ylabel('Target')
plt.show()
# this is one way to define a network
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.l2 = torch.nn.Linear(n_hidden, n_output) # output layer
def forward(self, x):
x = F.relu(self.l1(x)) # activation function for hidden layer
x = self.l2(x) # linear output
return x
net = Net(n_feature=1, n_hidden=10, n_output=1) # define the network
# print(net) # net architecture
net.to(device, dtype=torch.float32)
optimizer = torch.optim.Adam(net.parameters(), lr=0.01)
my_images = []
fig, ax = plt.subplots(figsize=(12, 7))
# train the network
for t in range(200):
prediction = net(train_input) # input x and predict based on x
loss = F.mse_loss(prediction, train_targets) # must be (1. nn output, 2. target)
optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
print("iteration %3i. loss: %8.3g" % (t, loss))
# plot and show learning process
plt.cla()
ax.set_title('Regression Analysis', fontsize=35)
ax.set_xlabel('Input', fontsize=24)
ax.set_ylabel('Target', fontsize=24)
ax.set_xlim(-1.05, 1.5)
ax.set_ylim(-0.25, 1.25)
ax.scatter(x.data.cpu().numpy(), y.data.cpu().numpy(), color="orange")
ax.scatter(train_input.data.cpu().numpy(),
train_targets.data.cpu().numpy(), color='red')
with torch.no_grad():
prediction = net(x) # input x and predict based on x
ax.plot(x.data.cpu().numpy(), prediction.data.cpu().numpy(), 'g-', lw=3)
ax.text(1.0, 0.1, 'Step = %d' % t, fontdict={'size': 24, 'color': 'red'})
ax.text(1.0, 0, 'Loss = %.4f' % loss.data.cpu().numpy(),
fontdict={'size': 24, 'color': 'red'})
# For live demo
plt.pause(0.001)
fig.canvas.draw() # draw the canvas, cache the renderer
# image = np.frombuffer(fig.canvas.buffer_rgba(), dtype='uint8')
# image = image.reshape(fig.canvas.get_width_height()[::-1] + (4,))
# image = image[:, :, :3] # convert RGBA to RGB by removing alpha channel
# my_images.append(image)
# # save images as a gif
# imageio.mimsave('./curve_1.gif', my_images, fps=10)